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ABSTRACT

The ability to forecast the number and location of large wildfire events (with specified confidence
bounds) is important to fire managers attempting to allocate and distribute suppression efforts during
severe fire seasons. This paper describes the development of a statistical model for assessing the forecasting
skills of fire-danger predictors and producing 1-month-ahead wildfire-danger probabilities in the western
United States. The method is based on logistic regression techniques with spline functions to accommodate
nonlinear relationships between fire-danger predictors and probability of large fire events. Estimates were
based on 25 yr of historic fire occurrence data (1980–2004). The model using the predictors monthly average
temperature, and lagged Palmer drought severity index demonstrated significant improvement in forecast-
ing skill over historic frequencies (persistence forecasts) of large fire events. The statistical models were
particularly amenable to model evaluation and production of probability-based fire-danger maps with
prespecified precisions. For example, during the 25 yr of the study for the month of July, an area greater
than 400 ha burned in 3% of locations where the model forecast was low; 11% of locations where the
forecast was moderate; and 76% of locations where the forecast was extreme. The statistical techniques may
be used to assess the skill of forecast fire-danger indices developed at other temporal or spatial scales.

1. Introduction

Wildland managers have long desired to know the
risks of severe fire events in advance of their occur-
rence. A number of actions are available to improve the
efficiency of wildfire suppression efforts during severe
fire seasons, including reallocating resources from
other activities to fire suppression, reallocating sup-
pression resources from low- to high-risk regions, pub-
lic education campaigns to reduce ignitions, curtailment
of fire use for vegetation management, and changing
the number and timing of temporary hires. Because the
annual expenditure on wildfire suppression is so high—
averaging more than $1.3 billion per year for federal
land management agencies since 2000 after adjusting
for inflation [Fire suppression costs were obtained from
the National Interagency Fire Center (online at http://

www.nifc.gov) and adjusted for inflation using the west-
ern urban consumer price index from the Bureau of
Labor Statistics.]—that even marginal improvements in
suppression efficiency have the potential to save signifi-
cant sums of money through either reduced suppression
costs or reduced losses resulting from wildfire. How-
ever, contingency actions have associated costs and
timeliness issues. For example, temporary hires for fire
suppression require training before they can be put to
work suppressing wildland fires, but may be retained
for only a limited time period (6 months). Hiring them
too early or too late incurs the risk that they will not be
available when they are most needed. Another need for
fire-danger forecasting is for planning prescribed fires.
Making effective decisions in light of these issues re-
quires information about the likelihood of large fire
events.

Managers rely on a variety of fire-danger indicators
to make their forecasts of the likelihood of large fire
events at various lead times. For example, the National
Fire Danger Rating system (Bradshaw et al. 1984) pro-
duces fire-danger maps for 1-day-ahead forecasts (in-
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formation was available online at http://www.wfas.us/
content/view/17/32/). Seasonal (3–6 months ahead) fire
risk forecast maps are produced by the Mapped–
Atmosphere–Plant–Soil System team (information was
available online at http://www.fs.fed.us/pnw/about/
programs/mdr/mapped.shtml). Fire-danger indicators
are useful for describing burning conditions at a par-
ticular location and time. However, their utility may be
enhanced if their relationship with actual fire occur-
rence and spread is quantified. Specifically, a useful
tool to managers will be a system whereby it is possible
to forecast probability of a large fire event given a par-
ticular value of a fire-danger index or a list of values of
various fire-danger predictors.

In this work we present a statistical model for esti-
mating the probability of a large fire event given a list
of fire-danger predictors. We define a large fire event as
an area greater than 400 ha burning in a 1° grid cell in
a month. Other definitions of a large event may also be
used. We will demonstrate how these models may be
used to produce fire-danger maps that are based on the
forecast probability of large fire events. We use historic
fire occurrence and fire weather predictors to demon-
strate the utility of this statistical tool for estimating
1-month-ahead forecasts. Similar statistical models may
be used to estimate and study the utility of probability
forecasts with longer leads. The latter will require avail-
ability of long-range forecasts of weather predictors.

Several climatic factors with apparent demonstrated
effects on wildfire occurrence and size were used as
predictors in this study. Numerous authors have re-
ported relationships between wildfire and moisture
anomalies concurrent with and antecedent to the fire
season (see, e.g., Balling et al. 1992; Swetnam and Bet-
ancourt 1998; Kipfmueller and Swetnam 2000; Veblen
et al. 2000; Donnegan et al. 2001; Heyerdahl et al. 2001;
Westerling et al. 2003b). Swetnam and Betancourt
(1990, 1998) and Westerling and Swetnam (2003) dis-
cuss the use of indices of Pacific Ocean sea surface
temperatures [El Nino–Southern Oscillation and Pa-
cific decadal oscillation (PDO)] as predictors for wild-
fire activity. Westerling et al. (2002, 2003a,b) demon-
strate the utility of the Palmer drought severity index
(PDSI) in forecasting wildfire area burned for wildfires
in a variety of vegetation types, and Westerling et al.
(2006) and Westerling (2007) have examined the rela-
tionship among temperature, seasonal temperature
forecasts, and forest wildfire.

For this research, we demonstrate the use of the sta-
tistical model for studying the utility of 1-month-ahead
forecast temperature values, PDSI values for the pre-
ceding 12 months, El Niño–Southern Oscillation, and
the PDO in forecasting 1-month-ahead probabilities of

large fire events. One of the strong points of the statis-
tical model is the ability to produce forecasts with speci-
fied precision and, as a consequence, the ability to study
the accuracy of the outputs when compared with his-
toric data.

2. Data

This work relied on fire history datasets compiled
from federal land management agency fire reports.
Westerling et al. (2003a) compiled a gridded 1° lati-
tude ! 1° longitude dataset of monthly fire starts and
the size of area burned from approximately 350 000 fire
reports reported by the U.S. Department of Agricul-
ture (USDA) Forest Service and the U.S. Department
of the Interior Bureaus of Land Management and In-
dian Affairs and the National Park Service for 1980–
2004.

Average monthly temperature and PDSI from U.S.
climate divisions (NCDC 1994) were projected onto a
1° grid to provide a monthly climate record for each
grid cell. PDSI is an index of combined precipitation,
evapotranspiration, and soil moisture that represents
cumulative precipitation and temperature anomalies
(Alley 1985; Guttman 1991). The index is far from be-
ing a perfect proxy for soil moisture (Alley 1984; Karl
and Knight 1985), but it appears to be well correlated
with wildfire dangers in the western United States, in
particular in numerous studies (see, e.g., Balling et al.
1992; Larsen and MacDonald 1995; Swetnam and Bet-
ancourt 1998, Westerling et al. 2002, 2003a; Westerling
and Swetnam 2003). PDSI is convenient for these pur-
poses because of both its easy availability and the fact
that it is a normalized index, the values of which pro-
vide a moisture index comparable across a diverse land-
scape.

We also employ two indices describing patterns of
sea surface temperatures in the Pacific Ocean known to
be associated with multiyear- to decadal-scale variabil-
ity in western climate: El Niño–Southern Oscillation
(the Niño-3.4 index, hereinafter Niño), and the PDO
(Gershunov and Barnett 1998; Dettinger et al. 1998).
Historical values of these indices were obtained from
the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (information was
available online at http:// www.cpc.ncep.noaa.gov/data/
indices/).

3. Statistical methods

a. Estimating wildfire-danger probabilities

We were interested in estimating wildfire danger at a
given location and time. As a measure for fire danger
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we used the probability that an area greater than some
specified value (e.g., 400 ha) will burn in a given 1° grid
cell during a given month (henceforth referred to as the
probability of a large fire event). We used a two-stage
evaluation procedure to estimate the probability of a
large fire event. In stage one we estimated the prob-
ability of at least one fire occurring in a given grid cell
in a given month, that is, the probability of “ignition.”
In stage two we estimated the conditional probability,
given at least one ignition, that an area greater than
a specified value burns, that is, the probability of
“spread” or “escape.” Last, the probability of a large
fire event was evaluated by multiplying the probability
of at least one ignition with the conditional probability
of escape given ignition.

We used logistic regression techniques with piece-
wise polynomials to estimate the probabilities of inter-
est as functions of explanatory variables (predictors;
see appendices A and B for further details). The ex-
planatory variables used were monthly average tem-
perature, (forecast from previous months), PDSI value
in the previous month, maximum PDSI in the last 12
months, and values of Niño and PDO in addition to
location (latitude, longitude) and month. The use of
piecewise polynomials, rather than logistic regression
with linear terms, was necessitated by the fact that
many of the relationships between the probabilities and
the explanatory variables appear to be nonlinear. For
example, the relationship between the probability of
ignition and month is nonlinear, with more fires (higher
probabilities) occurring in the middle of the fire season
(summer months) than at the beginning or end of the
season. Similarly, the relationships between fire occur-
rence or size and location is likely to be complex and
nonlinear. For example, it does not appear realistic to
assume that the probability of fire occurrence changes
linearly as one travels from south to north (with lati-
tude) or from east to west (with longitude). It is more
realistic to expect different regions to have different
probabilities depending on vegetation, topography, and
other variables specific to a given location. Spatially
explicit variables account for most of the correlations
between nearby grid cells. For example, neighboring
grid points are more likely to have similar vegetation
and fuel type, and hence a similar probability of large
fire events. The procedure proposed here allows the
inclusion of a location effect (a smooth function of lati-
tude and longitude) that acts as a surrogate for locally
specific predictors (e.g., elevation, fuel type) that are
not included in the model. Probabilities estimated using
this model have a unique value for each grid cell and
each date (month and year).

Historic averages (persistence forecasts) may be es-

timated using the frequency of times (during the 25 yr)
when a large fire event was observed at a given location
and date. An alternative, more efficient procedure is
one that takes advantage of the fact that nearby loca-
tions (and dates) are similar (correlated). A logistic
model with only location and time as predictors is such
a procedure. Forecasts produced from a model with
only location and time as predictors have a unique
value for each grid cell and each month; however, the
forecasts do not change from year to year.

Comparing forecast probabilities for a given time
(using a model with time-varying predictors) with fore-
cast probabilities from the persistence model makes it
possible to quantify departures from “normal condi-
tions” and to study the skill of the model with predic-
tors relative to a model based on historic averages (see
section c below).

b. Forecasting monthly temperatures

One of the predictors in our model was 1-month-
ahead forecast temperatures. These temperature fore-
casts were obtained by using 114 yr (1890–2004) of data
on monthly temperature values from the NOAA Cli-
mate Prediction Center. We used an autoregressive
model (arima module in the statistical package R,
which was available online at http://lib.stat.cmu.edu/R/
CRAN/) with month as a predictor to forecast 1-month-
ahead temperature values for each climate division in
the United States. The autoregressive model produced
reasonable forecasts for 1-month-ahead temperatures
when the procedure was used to forecast historic values
(Fig. 1a). Although similar forecast values may have
been obtained for the PDSI, the skill of the forecast was
adequate only when the change in PDSI was small (Fig.
1b). As a consequence, in this study we used the pre-
vious month’s PDSI values as a predictor. This limited
our estimations of fire danger to only 1-month-ahead
forecasts. We hope to be able to produce longer-range
probability forecasts using the same statistical proce-
dures as longer-range forecasts of predictors become
available. For example, the methods may be used to
study the skill of North Pacific sea surface temperatures
(Alfaro et al. 2004, 2006) or the skill of forecast national
fire-danger indices from weather models (Roads et al.
2005).

c. Fire-danger maps

We produced two types of fire-danger maps. The first
was based on the 1-month-ahead forecast probabilities
of large events using the following rule: fire danger in a
given grid cell at a given time was defined as low if the
probability of an area "400 ha burning is less than 10%,
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as moderate if the probability of an area "400 ha burn-
ing is between 10% and 30%, as high if the probability
of an area "400 ha burning is between 30% and 50%,
and as extreme, if the probability of an area "400 ha
burning is greater than 50%.

The formulas used to define the four danger levels
are given in appendix C. The size of areas burned (400
ha) and the cutoff probabilities used above are for dem-
onstration purposes. Managers may decide on other
cutoff points for what may be considered a large fire
event or acceptable levels of risk.

The second set of danger maps was produced to dem-
onstrate whether the forecast probabilities are above or
below the norm, where the norm is defined as the av-
erage probability for that location and date as esti-
mated by the persistence model. In particular, these
maps were based on the ratio of the odds of a large fire
event relative to the historic monthly odds using the
persistence forecast. The odds of an event are defined
as the ratio #/(1 $ #), where # is the probability of the
event occurring. Maps of fire danger were produced by
designating each grid cell as being either low, normal,
or high, depending on whether the odds of a large fire

event was less, equal, or higher than the historic odds.
Formulas for producing these maps are given in appen-
dix D. Once more, managers may decide to use other
definitions for what may constitute above- or below-
average fire danger based on probabilities of large fire
events.

d. Model appraisal

Model appraisal was done by comparing the ob-
served frequencies of events with forecast probabilities
using 25 yr of historic data. For binary data, as is the
case here, the observations (0 or 1) need to be grouped,
based on some criteria, and then a fraction of responses
in each group is compared with the average forecast
value for that group (Hosmer and Lemeshow 1989).
Graphs of observed versus forecast probabilities are
sometimes referred to as “reliability diagrams” (Wilks
1995).

There are many ways to group binary response data.
We used three different groupings. Each grouping en-
abled us to study the performance of the forecasts at a
different scale. The first grouping was done according
to month and forecast probability level. All grid cells in

FIG. 1. Observed and 1-month-ahead forecasts of (left) temperature and (right) PDSI for 1 climate division and 1 yr.
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a given month with an observed large fire event were
grouped by the forecast probability level (low, medium,
high, extreme). This grouping produced a table of the
fraction of times an actual large fire event was observed
when the 1-month-ahead forecast was low or high, and
so on, thus allowing one to demonstrate the skill of the
predictors.

The second grouping was done according to spatial
location and month. For each month and each 1° grid
cell, the number of years (out of 25) in which a large fire
event was observed was compared with the forecast
number of large fire events. Next, maps were generated
for each month that highlight grid cells where the ob-
served number of events was outside the 95% confi-
dence bounds of the forecast numbers. Estimated con-
fidence bounds included natural variation (binomial)
and variation resulting from the error in the estimated
model parameters. Maps generated in this fashion dem-
onstrated the skill of the model for forecasting events at
a given location. For example, if the maps show par-
ticular regions with many grid cells where the observed
values are outside (below or above) the forecast confi-
dence bounds, then one would conclude that the model
is under- or overpredicting the outcomes in that region.

Last, we produced reliability diagrams by grouping
all of the data into cells with similar forecast probabili-
ties (similar within %5% of each other). These dia-
grams demonstrate the overall performance of the
model and, in particular, the skill of the model relative
to the skill of the persistence forecasts.

In all cases the forecast probabilities for each grid cell
were estimated using cross validation. Specifically, pre-
dictions for a given year were done by estimating the
model parameters from all other years except the year
being predicted.

4. Results

a. Estimated effects of predictors

The explanatory variables (predictors)—forecast
temperature, PDSI in previous month, and maximum
PDSI in last 12 month, in addition to spatial location
and month—had significant effects (P value K 0.01) on
both probabilities of fire occurrence and of fire spread
given ignition. On average, fire danger (probability of
ignition and spread) appeared to increase with decreas-
ing (i.e., drier) PDSI. That is, dry conditions that would
foster fuel flammability appear to be important. Also,
fire danger appeared to be increasing as the maximum
PDSI of last 12 month increases. This indicates an ap-
parent increase in fire danger when there are large

shifts from high to low PDSI values (Fig. 2). The latter
is consistent with previous research, indicating that an-
tecedent moisture anomalies are important for fire risks
in ecosystems where the availability and continuity of
fine fuels (e.g., grasses) can be a limiting factor for the
ignition and spread of fires (Swetnam and Betancourt
1998; Westerling et al. 2003a)

The variables Niño and PDO also had significant,
albeit small, effects on the probabilities of large fire
events. The pattern of these effects depended on the
location. For example, in the southern region (lati-
tude &42°) the probability of fire occurrence seemed to
increase with increasing values of PDO and the prob-
ability of fire spread seemed to increase with decreasing
values of Niño. No such affects were apparent in the
northern region of the study area (latitude "42°). PDO
is a decadal influence with a multidecadal cycle, and is
significantly correlated with Niño over the model esti-
mation period. As a consequence, the 25 yr of fire his-
tory available to estimate our statistical model is not
likely to be sufficient to resolve a PDO signal in the fire
data. Furthermore, El Niño–Southern Oscillation de-
scribed by Niño is most likely to be associated with fire
danger via its association with interannual variability in

FIG. 2. Observed (dots) and predicted (solid curve) fraction of
cases with large fire events plotted against the difference between
maximum PDSI in the past 12 months and PDSI at present.
Dashed lines are the approximate pointwise 95% bounds.
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winter precipitation, the effects of which are already
incorporated into the PDSI variables included in the
model. Therefore, model coefficients for these vari-
ables may not be directly interpretable.

b. Model skill

The skill of the model in producing reliable fire-
danger ratings is demonstrated in Table 1 where the
observed number of large fire events in each of the
forecast levels was produced for the period 1980–2004.
According to values in Table 1, the model never pro-
duced an extreme forecast, or false alarm, during the 25
yr of the study for the months of May, June, September,
or October. For the month of July the model forecast
extreme danger levels 21 times. In 16 out of the 21 cases
(76%) an area greater than 400 ha did burn, and in 10
out of the 21 cases (48%) an area greater than 4000 ha
burned (latter not shown in table). At the other end of
the table, during July, the model forecast low danger in
2635 cases. Out of those we observed 79 cases (3%)
where an area greater than 400 ha burned (missed

events) and 0 cases (0%) where an area greater than
4000 ha burned (latter not shown in table).

The skill of the model in forecasting probabilities of
an area greater than 400 ha burning at a particular lo-
cation is demonstrated in the maps in Fig. 3. Maps of
significant differences between observed and forecast
probabilities at the 1° grid scale showed no apparent
spatial patterns. For example, for the months of August
and October (Fig. 3) the spatial pattern of significant
departure from forecast values appeared to be random.
Considering all 12 months (not shown), in 3.1% of the
grid cells the observed frequency of large events was
outside the upper 95% confidence bound. The above is
an indication that there is no apparent spatial bias in
the predicted probabilities. There are no apparent re-
gions where the number of misclassified cases is higher
or lower than expected.

Figure 4 shows the reliability diagrams for the per-
sistence (historic average) forecasts and the model fore-
casts. Model forecasts appear to be an improvement on
the persistence forecasts in two ways: first, fewer ob-
served points fall outside the model-forecast confidence

FIG. 3. Comparing observed and forecast number of year (out of 25) with large fire events for (left) August and (right) October. Cells
marked as less (yellow) are those where an observed number of years with large events was below the 95% forecast bounds. Cells
marked as greater (red) are those with an observed number of events larger than the 95% forecast bound.

TABLE 1. Relative frequency of locations with observed large fire events ("400 ha) between 1980 and 2004 in the western United
States for each month and in each forecast category.

Forecast probability

May Jun Jul Aug Sep OctLevel Range

Low (P & 0.1) 0.01 (7094)* 0.02 (4900) 0.03 (2635) 0.02 (2943) 0.03 (5581) 0.02 (7512)
Medium (0.1 ! P & 0.3) 0.07 (784) 0.11 (2616) 0.11 (3899) 0.14 (3715) 0.08 (2067) 0.12 (409)
High (0.3 ! P & 0.5) 0.26 (47) 0.33 (409) 0.36 (1370) 0.38 (1253) 0.20 (277) 0.50 (4)
Extreme (P " 0.5) — (0) — (0) 0.76 (21) 0.64 (14) — (0) — (0)

* Total number of 1° square grid cells over 25 yr.
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bounds than the persistence-forecast bounds; second,
forecast model probabilities spanned a wider range of
values (0%–76%) than those of the persistence fore-
casts (0%–47%). For a model with almost perfect fore-
casting skill, forecast probabilities will range from 0 to
1, with most values concentrated near 0 and 1. For a
model with no skill there will be no range in forecast
values. The forecast will be the same regardless of ei-
ther location or date. For example, such a forecast for
western United States will be 3.7%, that is, the total
fraction of times a large fire event was observed in a 1°
grid in the past 25 yr. The larger confidence bounds
(Fig. 4) for larger forecast values are due to smaller
numbers of observations in these groupings.

c. Probability maps

Maps of estimated persistence probabilities of large
fire events (area burned "400 ha), that is, maps of his-
toric averages, display the areas in the west of the
United States with the highest probabilities of fire (Fig.
5). Over the last 25 yr (1980–2004), areas with the high-
est probabilities in August appear to be in southern
California and around southern Idaho. In October, only
one grid cell in southern California and one in southern

Idaho had estimated probabilities greater than 10%.
These maps demonstrate an overall pattern of large fire
events over the last 25 yr.

Examples of fire-danger maps using forecast prob-
abilities and forecast odds ratios for 2 yr demonstrate
some of the outputs from our modeling (Fig. 6). Man-
agers may be interested in studying such maps for a
range of past years in order to further assess the utility
of the probability model in their management practices.
For example, the forecasts for August 2000 predicted
higher-than-average odds for most areas in Utah and
Colorado (orange regions Fig. 6a). This result can also
be deduced if one compares the estimated persistence
probabilities (Fig. 5) with the estimated probabilities
for August 2000 (Fig. 6b). Note that higher-than-nor-
mal odds do not necessarily imply high probabilities of
large fire events. Compare, as an example, the esti-
mated odds and estimated probabilities for August
2000 for Colorado, Arizona, and New Mexico (Figs.
6a,b). This emphasizes the need to look at not only
departures from normal conditions but at actual prob-
abilities of large fire events. As an example, suppose
the probability of an event at a particular location and
time is 0.1% and the historic average for that location is
0.01%; then, the odds are 11 times the historic average,

FIG. 4. Observed vs forecast probabilities of large fire events grouped according to similar values of (a) persistence probabilities
and (b) model-forecast probabilities. Vertical lines are estimated pointwise 95% confidence bounds.
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and yet the likelihood of a large fire event is still very
small.

The second example is for August 1987 (Figs. 6c,d).
During this period the odds for the regions of northern
California and southwestern Oregon were mostly nor-
mal or higher than normal and the forecast probabili-
ties (in particular, in the grid cells along the coast) were
low (less than 20%), and yet many large fire events
were observed in this region for this time. In other
words, managers acting on these forecasts may have
been unprepared for these events. August 1987 was
associated with an anomalously large number of dry
lighting strikes. Such instances are unavoidable with
most any forecasting method. However, using the
present probability forecasts one is able to quantify
(and consequently attempt to minimize) the frequency
of times that large events are missed. From Table 1, it
is seen that with the present model large fire events
were missed (forecast as low) 2% of the time during the
month of August. If this failure rate is not acceptable,
then it may be lowered by changing the criteria for a
low forecast. However, that may be at the cost of fore-
casting many more cases with a moderate probability of
a large fire event when in realty the probability is very
small.

5. Discussion

In this paper we present methods for estimating,
forecasting, and mapping fire danger. We found the
methods useful for assessing the skill of predictor vari-
ables in forecasting 1-month-ahead large fire events.
PDSI values in the previous 12 months together with
forecast next-month temperatures were useful indica-
tors for forecasting fire probabilities 1 month ahead.
The methods are not limited to these predictors or to

only 1-month-ahead forecasts. A similar study may be
done with forecast fire-danger and fire weather indices
(Burgan 1988; Roads et al. 2005) in order to study the
skill of 3- or 6-month-ahead forecast indicators on fu-
ture fire danger. In addition, recent advances in fore-
casting temperature and PDSI using observed North
Pacific sea surface temperatures (Alfaro et al. 2004,
2006; Westerling 2005) could also be used in conjunc-
tion with the methods demonstrated here to produce
high-resolution seasonal forecasts of wildfire danger
with specified precisions.

One important feature of the model is its ability to
develop a fire-danger rating system (based on the prob-
abilities being low or high, and so on) where the man-
ager can tell with confidence what the overall error rate
will be; that is, how often a large fire event will be
missed because the predicted forecast was low, or how
often a large fire event will actually be observed when
an extreme forecast is predicted. A second feature of
the model is the facility with which the limitations of
the model with a particular set of predictors may be
studied. For example, with the present predictors, dur-
ing the month of October in the southern California
region observed large fire events appear to be higher
than forecast for the 25 yr of the study (Fig. 3). One
explanation is that Santa Ana winds (a variable not
included in the model) are an important component of
wildfire risk in southern California in the autumn and
winter months (Keeley 2004; Westerling et al. 2004),
and are especially salient prior to the start of winter
precipitation. Consequently, they are likely a significant
source of variability in fire risks in October in coastal
southern California that is not captured by the variables
used in our model (PDSI and temperature, ENSO, and
PDO).

In a similar way, numerous large fires in northern

FIG. 5. Estimated persistence (historic average) probabilities of large fire event ("400 ha burned) in 1° cells in the western United
States for (left) August and (right) October.
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California and southern Oregon in August 1987 were
associated with an anomalously large number of dry
lighting strikes in inaccessible terrain during a moder-
ate drought. A large number of ignitions in difficult
terrain can overwhelm local suppression resources, and
with appropriate climatic conditions, fires can subse-
quently grow to a size that is difficult to suppress by the
time additional resources are mobilized from outside
the area. While the variables used in our model can
describe climatic conditions that make live and dead
vegetation conducive to the ignition and spread of fires,
they do not capture variability in the source of ignitions.
Factors like dry lightning are currently beyond the
scope of monthly or seasonal lead-time forecasts, and
represent a source of error in forecasting wildfire that is
not presently reducible.

There are many factors that affect fire occurrence
and spread. Many of them are not systematically mea-
sured, and thus insufficient data are available for their
inclusion in regional-scale analyses and models. Un-
measured sources of variation are handled by including

a stochastic element in the models. Using a statistical
model, such as the one described herein, is one way of
quantifying not only the deterministic part of the pro-
cess (relating to the predictors in the model) but also
the remaining “unexplained” variability. The latter will
enable managers to make decisions with specified pre-
cisions by producing estimates of the error rate associ-
ated with a given decision rule.
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APPENDIX A

Probability Models

Let Yijk be the (random) size of the area burned in
grid i (i ' 1, . . . , I), month j ( j ' 1, . . . , 12), and year

FIG. 6. Two examples of probability-based fire-danger maps. (a), (c) Maps of odds indicate forecast odds for a particular month and
year relative to the historic odds of a large fire event ("400 ha). (b), (d) Maps are the forecast probabilities of large fire events. Dots
in (b) and (d) indicate the cells with observed area burned "400 ha.
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k (k ' 1980, . . . , 2004). Let Nijk be the (random) num-
ber of fires in grid i, month j, and year k. Let Xijk be a
matrix of explanatory variable values for grid i, month
j, and year k. We define probability of fire danger as

#ijk ' Pr(Yijk $ C |Xijk, !), (A1)

where C is a critical size of interest (e.g., 400 ha) and !
is a vector of parameters. The probability in Eq. (A1)
may be written as a product of two probabilities,

#ijk ' Pr(Nijk $ 0 |Xijk, !1) ! Pr(Yijk $ C |Xijk, Nijk $ 0, !2).

(A2)

APPENDIX B

Logistic Regression with Splines

We used logistic regression techniques with piece-
wise polynomials to estimate the probabilities in Eq.
(A2). To be specific, we estimated the regression rela-
tionship

logit(p%) ' &o * g1(lat% , lon%) * g2(month%)

* +
m'1

gm*2(Xm%), (B1)

where the subscript , indicates the 1° ! 1° ! 1-month
voxel, p is either one of the probabilities on the right
side of Eq. (A2) , (lat, lon) are the latitude and longi-
tude of the midpoint of the 1° grid cell, and Xm are
explanatory variables. The terms g() are semiparamet-
ric smooth functions (Hastie et al. 2001) such as piece-
wise polynomials, periodic splines (for estimating
month-in-year effect), and thin-plate splines (for esti-
mating the spatial surface as a function of lat, lon). The
statistical package R (more information was available
online at http:www.r-project.org) has a module bs()
that determines the basis functions of a given vector.
Once the basis functions are determined one may use
any linear or logistic regression routine because the
model is linear in these new expanded variables. For
the spatial component g(lat, lon), we utilized the two-
dimensional version of the basis function, that is, the
thin-plate spline function. The required modules for
fitting thin-plate splines within R were downloaded
from the Internet (Geophysical Statistical Project; in-
formation available online at http://www.cgd.ucar.edu/
stats/Software/Fields). Similar logistic models were
used in Preisler et al. (2004), Preisler and Benoit (2004),
and Preisler and Westerling (2005).

APPENDIX C

Probability-Based Fire-Danger Maps

Criteria for defining levels of fire danger are as fol-
lows:

Low if #̂1 * 2'̂1 ! (1

Moderate if (1 ! #̂1 * 2'̂1 ) (2

High if (2 ! #̂1 * 2'̂1 ) (3

Extreme if #̂1 * 2'̂1 " (3

, (C1)

where #̂1 are the forecast probabilities [using Eqs.
(A1), (A2), and (B1)] of area burned, in a particular
grid cell and date, being greater than C1; -̂1 are jack-
knife standard error estimates (Efron 1982) of #̂1, and
.k (k ' 1, 2, 3) are arbitrary probability cutoff points.
For the purposes of this study, we used the cutoff values
0.1, 0.3, and 0.5 and C1 ' 400 ha (%1000 acres).

APPENDIX D

Maps of Departure from Normal Conditions

Let /̂ ' log(0̂) be the logarithm of the estimated odds
relative to historic odds. To be specific,

* '
#

1 $ #
÷

#H

1 $ #H
,

with # being the model-forecast probability and #H be-
ing the probability based on historic averages (persis-
tence forecasts). Fire-danger maps were produced us-
ing the following rules:

Lower than historic if +̂1 * 2'̂1 ) 0

Normal if $ 2'̂1 ! +̂1 ! 2'̂1

Higher than historic if +̂1 $ 2'̂1 $ 0

. (D1)
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