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Abstract

In 2002. there were 88,458 fires reported on 
federal lands. These fires burned 6,937,584 acres 
and 2,381 structures costing taxpayers $1.6 
billion for fire suppression. On average, 
4,215,089 acres of federal lands burn annually. 
Forecasting wildland fire risk (occurrence and 
size) is important to fire managers who desire to 
know the risks of severe events well in advance 
of their happening. In this talk, we discuss the 
estimation of a probability model for forecasting 
fire risk one month in advance. The model uses 
25 years of historic fire data on federal lands in 
addition to weather and climatological variables.

Keywords: forecasting, Palmer Drought Severity 
Index, semiparamteric regression, spatial and 
temporal model.

Introduction

Data

This work relied on two fire history data sets 
compiled from Federal land management agency 
fire reports.  Westerling et al (2003) compiled a 
gridded one-degree Lat/Lon data set of monthly 
fire starts and acres burned from approximately 
300 thousand fire reports reported by the USDA 
Forest Service and the USDI’s Bureau’s of Land 
Management and Indian Affairs and the National 
Park Service for 1980-2000.  This fire history 
was updated through 2004 and used to estimate 
the risk of ignition in the analysis presented 
below. 
In addition,  a large (> 1000 acres) fire history 
compiled from the same sources by Westerling et 
al (2005) was used to describe the risk of large 
fire occurrence.  Fire records in the latter data set 
were cross-checked to eliminate duplicate 
records and to correct errors in location wherever 
possible, comparing reported latitude and 
longitude to coordinates derived from the public 

land survey system and the boundaries of the 
reporting land management units.  
Average monthly Temperature and Palmer 
Drought Severity Indices (PDSI) from U.S. 
Climate Divisions (NCDC 1994) were projected 
onto a one degree grid to provide a “local” 
monthly climate record for each grid cell.   PDSI 
is an autoregressive index of combined 
precipitation, evapotranspiration, and soil 
moisture that represents cumulative precipitation 
and temperature anomalies (Alley 1985, 
Guttman 1991).  The index is far from being a 
perfect proxy for soil moisture (Alley 1984, Karl 
and Knight 1985),  but it has proven to be well 
correlated with wildfire risks in the western U.S. 
in particular in numerous studies (see, e.g., 
Balling et al. 1992; Larsen and MacDonald 
1995; Swetnam and Betancourt 1998, Westerling 
et al 2002 and 2003, Westerling and Swetnam 
2003). PDSI is convenient for these purposes due 
to both its easy availability and due to the fact 
that it is a normalized index, the values of which 
provide a moisture index comparable across a 
diverse landscape.
We also employ two indices describing patterns 
of sea surface temperatures in the Pacific Ocean 
known to be associated with multi-year to 
decadal scale variability in western climate:  the 
El Niño-Southern Oscillation (NINO), and the 
Pacific Decadal Oscillation (PDO) (Gershunov 
and Barnett 1998, Dettinger et al 1998).  
Historical values of these indices were obtained 
from the NOAA’s Climate Prediction Center 
(http:// www.cpc.ncep.noaa.gov/data/indices/).

Statistical Methods

Probability models

We are interested in estimating wildfire ‘danger’ 
at a given location and time. As a metric for fire 
danger we use the probability, π,  that an area 
greater than some specified value (e.g., 1000 
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acres) will burn in a given 1x1 degree grid cell 
during a given month. Let Yijk be the random size 
of the area burned in grid i (i = 1, …, I), month j 
(j =1, …, 12) and year k (k = 1980, …, 2004). 
Let Nijk be the random number of fires in grid i, 
month j and year k.  Let Xijk be a matrix of 
explanatory variable values for grid i, month j 
and year k. We define probability of fire risk as 

                        [1]                                          

where C is a critical size of interest (e.g.,  1000 
acres) and θ is a vector of parameters. The 
probability in equation [1] may be written as a 
product of two probabilities,

                    [2]

Although the probability in equation [1] may be 
evaluated directly, we chose to use the two stage 
evaluation procedure in equation [2] because 
different relationships may exist between 
explanatory variables and the probability of 
‘ignition’ (at least one fire)

and the probability of ‘spread’ given at least one 
fire 

.

Further details of the preceding probability risk 
model are found in Brillinger et al. (2003, 2004), 
Preisler et al. (2004) and Preisler and Benoit 
(2004).

Estimation

We used logistic regression techniques with 
piece-wise polynomials to estimate the 
probabilities in equation [2]. Specifically, we 
estimated the regression line

 

                           

[3]

where the subscript,  v, indicates the 1x1-
degreexmonth voxel;  p is either the probability 
of ignition or probability of spread ; (lon, lat) are 
the longitude and latitude of the mid point of the 
1x1-degree grid cell; Xm are explanatory 
variables. In the present study the explanatory 
variables used were temperature; PDSI value in 
the previous month; maximum PDSI in the last 
12 months; values of NINO and PDO. The terms 
g() are semi-parametric smooth functions such as 
piecewise polynomials, periodic splines, or thin 
plate splines (Hastie et al. 2001). These functions 
are needed to account for non-linear 
relationships. For example, the relationship 
between probability of ignition and month is 
non-linear with more fires (higher probabilities) 
occurring in the middle of the fire season 
(summer months) than at the beginning or end of 
season. Similarly, the relationships between 
temperature and probability of ignition or spread 
may not be linear. The basic idea here is to 
replace the vector of inputs (covariate) with 
additional variables which are transformations of 
the original variables.  For example, X may be 
replaced by X and X2 if the relationship is a 
second degree polynomial. In the present 
approach, each (n x1) vector, X, is replaced by an 
(n x  q) matrix of basis functions which are then 
used in a simple or logistic regression routine. 
The statistical package R (R Development Core 
Team, 2004) has a module bs( ) that determines 
the basis functions of a given vector. Once the 
basis functions are determined one may use any 
linear or logistic regression routine because the 
model is linear in these new expanded variables. 
For the spatial component, g(lon , lat), we 
utilized the two dimensional version of the basis 
function, i.e., the thin plate spline function.  The 
required modules for fitting thin plate splines 
within R were downloaded from the web 
(Geophysical statistical project, 2002). 

The models in equation [3], together with 
equation [2], when evaluated, give a unique 
estimate for each grid cell and each month within 
a year.  Historic average probabilities of fire 
danger for 1980-2004 were estimated in a similar 
fashion with equation [3] replaced by,
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[4]

In other words, only location and month were 
included in the model. Historic averages (or 
climatology) have a unique value for each grid 
cell and each month, however, the values do not 
change from year to year.

Forecasting

One-month-ahead forecasts of the probabilities 
of fire occurrence and fire spread were obtained 
by first forecasting values of the explanatory 
variables. We used time series data for a period 
of 114 years (1890-2004) on the monthly values 
of the explanatories from NOAA’s Climate 
Predction Center. Next we used autoregressive 
models (arima module in R) to forecasts one-
month-ahead values for each climate division in 
the US. For temperature we also used month as a 
regressor in the autoregressive model. The 
autoregressive model had the best skill in 
forecasting temperature values (Figure 1). 
Forecasted PDSI values were reasonable only 
when the change in PDSI was small. 
Consequently, in this study we produced only 
one-month-ahead forecasts of fire risk because it 
required forecasts of only the temperature 
variable (PDSI values used in the model were 
those of the previous month). 
It should be noted that further improvements in 
forecast skill for fire risks may be achieved by, 
for example, using North Pacific sea surface 
temperatures as predictors for Temperature and 
PDSI.  However, the emphasis in the present 
analysis is on demonstrating the feasibility of 
using logistic probability models for estimating 
fire risk.

Fire Danger Maps

 We produced risk maps using the following rule: 
risk in a given voxel was defined as

where  is the estimated probability of > 1000 
acres burns in a given voxel as given by equation 

[1] and [3]; is the jackknife standard error 

estimate of  , and , k= 1,2,3 are arbitrary 

probability cutoff points. For the purposes of this 
study we used the cutoff values 0.1, 0.3 and 0.6. 
Other cutoff points may be used both for C 

(defining large fires) and (defining the 

categories of risk).

Results

The explanatory variables temperature, PDSI in 
previous month, maximum PDSI in last 12 
month,  in addition to spatial location and month, 
had significant effects on both probabilities of 
fire occurrence and fire spread given ignition. 
The effects of the two climate change variables, 
NINO and PDO, were marginally significant 
with no obvious patterns. On average fire risk 
(probability of ignition and spread) appeared to 
increase with decreasing PDSI and increasing 
maximum PDSI. The latter indicates an increase 
in fire risk when there are large shifts from high 
to low PDSI values (Figure 2).  Maps of 
estimated probabilities of large fire incidences 
(Figure 3) produced by the climatology model 
(equation [4]) display the areas in the West of the 
USA with high risks of fire. Areas with highest 
probabilities of fire risk in August appear to be in 
California and around Southern Idaho. In 
October, only a few grid cells in Southern 
California and Southern Idaho have probabilities 
greater than 5%.
We assessed the skill of the model with weather 
variables included (equation [3]) by producing a 
plot of the observed monthly total number of 
cells with areas burned > 1000 acres. These were 
then compared with the predicted numbers, 
produced by the model, using cross-validation 
(Figure 4). Specifically, predictions for a given 
year were done by estimating the model 
parameters from all other years excepting the 
year being predicted.  Confidence bounds 
produced included natural (Poisson) variation 
and variations due to the error in the parameter 
estimated.  The model appears to give reasonable 
predictions of the total number of grid cells with 
‘high fire risk’. Seven percent of the observed 
totals where outside the 95% confidence bounds. 
To study the skill of the model for forecasting 
fire risk at a given grid cell we generated maps 
that highlight grid cells with the observed values 
outside the 95% confidence bounds of predicted. 
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Observed numbers are the number of years (out 
of 25) with > 1000 acres burned in a given cell. 
This was compared with the corresponding 
forecasted values. The spatial pattern of 
significant departure from forecasted values 
appeared to be random for the months of August 
and October (Figure 5). However, it is of interest 
to note the higher than forecasted observed 
values in October in some of the cells in 
Southern California. 
We also produced maps of fire risk (Figure 6) 
based on the probability of > 1000 acres burning 
in a given voxel. Managers may be interested in 
studying such maps for a range of past years in 
order to study the utility of this risk model in 
their management practices.   
   

Discussion
 
In this talk we presented methods for estimating, 
forecasting and mapping fire risk. We found the 
methods useful for assessing the utility of fire 
danger indices in forecasting one month ahead 
large fire events.  The estimated statistical models 
were also useful for producing error rates 
(precision estimates). Error rates are essential for 
managers when studying the utility of a given 
tool (model) for fire risk prediction. 
We found the PDSI variables, together with 
temperature, to be useful indicators for 
forecasting fire risk one month ahead. A similar 
study may be done with forecasted fire danger 
and fire weather indices in order to study the 
skill of 3 month or 6 month ahead forecasts on 
fire risk. In addition,  recent advances in 
forecasting temperature and PDSI using 
observed North Pacific sea surface temperatures 
(Alfaro et al 2005, Westerling et al 2003) could 
also be adapted to improve forecast skill for 
wildfire risks.
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Figure 1: Observed and one-month-ahead forecasts of temperature and PDSI for one 
climate division in Idaho. 
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Figure 2: Observed and predicted fraction of voxels with greater than 1000 acres burned 
plotted versus the difference between maximum PDSI in the past 12 month and PDSI in 
the previous month. There is a significant increase in probability of large fire risk with an 
increase in the PDSI difference.                                         
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Figure 3: Estimated historic probabilities of greater than 1000 acres burned in a given 1o x 1o grid cell in 
Western United States. Probabilities were estimated using a model including only spatial and temporal 
(monthly) effects.

Figure 4 Observed and forecasted monthly total number of grid cells with area burned > 1000 acres. 
Dashed lines are estimated 95% approximate bounds.  7% of observed totals are outside the bounds.  
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Figure 5 Comparing observed and forecasted number of years (out of 25) with more than 1000 acres 
burned. Cells marked as Less (Yellow) are those where observed number of years (with > 1000 acres 
burned) is below the 95% forecasted bound. Cells marked as Greater (Red) are those with observed number 
larger than the 95% forecasted bound.
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Figure 6: Fire risk maps based on the probability of > 1000 acres burning in a given 1x1 degree grid cell. 
Black dots are locations of cells with observed areas burned > 1000 acres. Low and high fire danger levels 
were produced by grouping the estimated probabilities into 4 groups. In the Western US, 1997 was a 
relatively low fire year while 2000 was a high fire year.
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