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Abstract. A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division
Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in
western U.S. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical
correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong
negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season
and area burned dominate in most higher elevation forested provinces, while strong positive associations between
anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland
provinces. In much of the western U.S., above- and below-normal fire season forecasts were successful 57% of the
time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by
a fire season at the opposite extreme of that forecast.

Additional keywords: climatology.

Introduction

Strong associations between observed climate anomalies at
lags of one season to years in advance and normalized area
burned in the western U.S. wildfire season have recently
been described using a newly compiled comprehensive
gridded western regional fire history (Westerling et al.
2001). Earlier studies of fire scar chronologies and local fire
histories have demonstrated that large-scale climate patterns
are linked to the severity of the wildfire season in various
regions of the U.S. at similar lead times (Simard et al.1985;
Swetnam and Betancourt 1990, 1998; Balling et al.1992;
Jones et al. 1999; Veblen et al. 2000; Donnegan et al. 2001).
These relationships and the availability of a comprehensive
western wildfire history make possible this experimental
statistical methodology forecasting area burned in western
wildfires one season in advance. 

Previous work (Westerling et al. 2001, 2003) has
established that lags of the Palmer Drought Severity Index
(PDSI) (Alley 1984) can be used to forecast area burned at
lead times of a season to years in advance, using local PDSI
as explanatory variables. While the statistical linkage does

not account for effects of short term weather such as hot, dry
winds and lightning, nor various human impacts such as fire
suppression, land use, and arson, it does produce measurable
prediction skill above that expected by chance by tapping
into climate factors that affect fuel availability and
flammability. Many authors have hypothesized that fuel
availability is promoted by anomalously wet antecedent
years through fuel production and carryover, while fuel
flammability is enhanced in a dry year (Swetnam and
Betancourt 1990, 1998; Veblen et al. 1999, 2000; Donnegan
et al. 2001; Westerling et al. 2003). 

Regional indices describing patterns of variability in
PDSI—represented by leading principal components (PCs)
of antecedent PDSI values—show similar skill in forecasting
western wildfire season severity. Moreover, models based on
these regional indices yield some predictive skill even in
locations where strong associations between local PDSI
values and area burned are lacking. For example, normalized
area burned in the Northern Rockies shows little correlation
with local PDSI at lead times early enough to be useful for
forecasting the fire season, but may be forecast (correlations
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> 0.5) using PCs of antecedent seasons’ PDSI from 110
western climate divisions (Westerling 2001, 2003). Western
climate divisions—often quite large and covering a diverse
topography—sometimes rely on only a few weather stations
for precipitation and temperature data, which may be
unrepresentative of conditions pertinent to wildfires
reported in the neighborhood of a particular division.
Regional climate indices, however, record climate signals
associated with atmospheric circulation patterns spanning a
broad area, and may as a result be useful for generating area
burned forecasts where local climate division information is
inadequate.

Canonical Correlation Analysis (CCA) (Johnson and
Wichern 1998) offers a method for constructing wildfire
season severity models whose prediction skill derives from
spatial and temporal patterns in climate spanning a broad
region and several seasons. Here we estimate a forecast
model for the entire western U.S. using CCA to calculate
linear relationships between principal components of
seasonal area burned aggregated by ecosystem province
(Bailey et al. 1994) and principal components of U.S.
Climatological Division PDSI values from several seasons
(similar to the forecast methodology in Gershunov et al.
2000). In other words, the model is the sum of relationships
between two sets of patterns—one describing PDSI, the
other describing area burned. The result is an improvement
in forecast skill over an earlier, gridded forecast using
principal components regression that we report elsewhere
(Westerling 2001). We use ‘leave-one-out’ cross-validation
(von Storch and Zwiers 1999) to estimate robust measures of
forecast skill over a range of choices for model complexity,
and a Skill Optimization Surface (SOS) to select a
parsimonious model maximizing forecast skill over the
entire region.

Data

The fire history used here is composed of seasonal acres
burned on a 1º × 1º grid extending from 31°N to 49°N
latitude and from 101°W to 125°W longitude for 1980
through 2000 (Westerling et al. 2003). These data were
compiled from 300 000 quality-controlled fire reports of the
Bureau of Land Management (BLM), U.S. Forest Service
(USFS), National Park Service (NPS) and Bureau of Indian
Affairs (BIA). Data were sparse in the grid cells from 101°W
to 103°W longitude, and the ecosystem provinces covering
these longitudes are not characteristic of most of the rest of
the western U.S., so data east of 103°W longitude were
excluded from this analysis. 

While some skill in forecasting area burned on a 1º × 1º
grid has been previously demonstrated (Westerling et al.
2001), aggregating area burned over larger regions may help
to reduce some of the temporal and spatial noise apparent in
the gridded data. Simply put, the smaller the area of
aggregation, the less the likelihood that there will be

significant fire activity occurring within that area for any
given fire season. The result of aggregation over too small an
area is a time series with a couple of years of very large areas
burned, and the rest close to zero. Given that only 21 years of
data are available, it is difficult to detect a long-lead climate
signal in such a time series against the background noise of
management actions, errors in the data, and random
variations in human- and lightning-caused ignitions.
Aggregating over a larger area can average out some of these
background effects and produce a time series more reflective
of fuel conditions on the one hand, and more amenable to
statistical analysis on the other. In order not to obscure any
climate signal, however, it is important that any aggregation
scheme group areas with wildfire regimes that respond to
climate in similar ways. 

An ecosystem classification scheme described by Bailey
et al. (1994) and adopted by the USFS and others as a
framework for ecosystem analysis and management offers a
useful level of aggregation for this analysis. Bailey et al.’s
ecosystem provinces are classified by coarsely generalized
characteristics of climate, vegetation and elevation—all of
which appear to be important for forecasting fire season
severity (McKelvey and Busse 1996; Westerling et al. 2001).
This classification scheme has the added benefit of being an
accepted and familiar tool of many potential users of any
operational long lead wildfire season severity forecast for
the western U.S. 

In many instances the location data for fires described in
the original federal agency fire reports were sufficient only
to locate these fires on a 1º resolution, and do not allow for
finer resolutions. Application of Bailey et al.’s (1994)
ecosystem provinces as a classification scheme for western
wildfires was consequently constrained to the coarse 1º × 1º
grid. Figure 1 shows the 17 ecosystem provinces used in this
analysis projected onto the grid. Area burned was aggregated
for a 6-month fire season (May through October) for 17
ecosystem provinces, and a log10 transformation was then
used to normalize the data. The result was 17 time series,
each of 21-years, of log10 area burned spanning most of the
western US. 

For explanatory variables, we use 110 western U.S.
Climate Division PDSI series (Karl and Knight 1985). While
alternative drought indices are available, the PDSI is an
imperfect but readily available proxy for soil and fuel
moisture broadly familiar to western wildfire managers, and
produces long lead fire season severity forecasts with skill
significantly better than that afforded by chance. The PDSI
predictors were chosen to represent five different lead times:
March and December immediately preceding the fire season,
August and March 1 year previous to, and August 2 years
prior to the fire season, for a total of 550 predictor variables
(cf. Westerling et al. 2001). March and August PDSI in the
preceding years were selected as indicators of moisture
available in spring and summer for fuel growth. Excess
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moisture in these seasons may also contribute to fuel
accumulation by suppressing antecedent years’ area burned.
December and March PDSI immediately prior to the fire
season were selected as indicators of fuel moisture
conditions leading into the fire season. 

Since the divisional PDSI is an estimate of drought severity
using a weighted sum of past and present monthly
precipitation and temperature from a given climate division
(Alley 1984, 1985; Guttman 1991), consecutive months of
PDSI are usually highly correlated. Including PDSI values
from additional spring and summer months would thus be
unlikely to add much information. By limiting the model to
data available up through March of the current year, it is
possible to produce a forecast before budgeting and resource
allocation decisions are taken for the western U.S. fire season. 

Methods

Space-time varying patterns: principal components 

To further reduce noise over what is accomplished by
analysing wildfire by ecoregions, to avoid colinearity among
both data sets, and to substantially diminish the number of
variables included in the CCA, the predictor (PDSI) and
predictand (area burned) data sets were formed from
principal components (PCs) for each of the two data sets
(Johnson and Wichern 1998). Intuitively, each PC describes
the temporal evolution of a specific spatial pattern.
Algebraically, the first PC of each data set is the linear
combination of all the variables in the data set with
maximum variance. Each subsequent PC is likewise a linear
combination of the original variables with its variance
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Fig. 1. Bailey’s ecosystem provinces projected onto a 1º × 1º grid (Bailey et al. 1994).
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maximized subject to the constraint that the PC is linearly
independent of each other PC. Thus, each PC summarizes an
independent mode of variability in its original data set, and
taken together all the PCs summarize all the information
contained in the original data set. For the predictor data, the
first six principal components explain over 70% of total
variance. Similarly for the predictand, the first six principal
components explain more than 85% of total variance. So,
relatively few PCs are needed to convey most of the
information contained in these data. 

Canonical correlation analysis

We use CCA to identify patterns in each of the two PC data
sets that are optimally correlated with each other. A linear
combination of the predictor PCs and a linear combination of
the predictand PCs are calculated such that the correlation
between the two is maximized. Each subsequent pair is
similarly calculated to maximize their correlation subject to
the constraint that they be uncorrelated with the other pairs.
Since these canonical correlates (CCs) are linear
combinations of PCs, which in turn are linear combinations
of the original data, we can specify a set of CCs to be our
linear forecast model and solve for standardized log10 acres
burned, our predictand, given the appropriate lagged PDSI
values. For a detailed CCA methodology see Barnett and
Preisendorfer (1987), Johnson and Wichern (1998), and
Gershunov et al. (2000). Intuitively and in fact, the CCs are
a set of linear relationships between two sets of patterns
describing the predictor and predictand fields.

Skill optimization surface

To select a parsimonious CCA model using the specified
lags of PDSI, we calculated Skill Optimization Surfaces
(SOSs) like that shown in Fig. 2. The x-axis denotes the
number of PCs contributed from the predictor and from the
predictand data. The number of each are constrained to be
equal here to render the solution more tractable. The y-axis
denotes the number of CCs included in the model. Note the
triangular shape of the shaded area—the maximum number
of CCs is limited to the number of PCs included. Thus, in the
lower left corner we use only the first principal component,
which explains the largest share of variance, from both the
predictors and predictands, and as a result are constrained to
estimating our model from only the first CC pair. As we
move to the right, adding PCs in order of their share of the
total variance of their data sets explained, we can choose to
move up the y-axis, adding additional CC pairs in our model
in order of decreasing strength of correlation.

The shading in the SOS denotes the overall skill of the
forecast, calculated here as the sum of squared positive
correlations between the cross-validated series of model

estimates and the observed area burned for all 17 provinces
(Fig. 2). Negative correlations indicate no skill and were
excluded. This metric gives more weight to models with a
small percentage of provinces with high forecast skill than
the other metrics used for this analysis—the sum of
correlations, including negative correlations (SCOR) and the
percentage of provinces with significant correlations
between forecasts and observations (PSIG). However, the
model dimensions showing the greatest skill in this
example—three canonical correlations composed of two sets
of six principal components—were also ranked first for
SCOR, while PSIG tended to rank nearby points first. This is
approximately the model complexity needed to capture the
effect of relevant climate forcing patterns on coherent fire
patterns.* The SOS provides an alternative to arbitrarily
selecting model complexity.

Model skill and cross-validation

Conditional and probabilistic forecasts may better reflect the
uncertainty in prediction skill than simple correlations. This
is achieved by ‘tiling’ of the data—i.e. expressing it in terms
of categories as opposed to specific values—and presenting
probabilistic outcomes contingent on forecasts for each
category. In this case, after selecting the forecast model
dimensions using an SOS, each province’s observed and
forecast time series were sorted into terciles. Thus, for
example, each year’s burn acreage for each region was
assigned to be in one of three classes: Above normal (A),
Below normal (B) or Normal (N), the occurrence of each
class being equally likely (7 out of 21 years, or 33%).
Because forecast model dimensions are selected as those

SOS: sum squared positive correlations 
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Fig. 2. CCA model skill optimization surface. Whole field metric:
sum of squared positive correlations.

*Model complexity can also be optimized for geographic regions of interest (i.e. regional skill can always be improved at the expense of total
predictand field skill).
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yielding the highest skill from among the large number of
models calculated in the SOS, even a forecast model derived
using random predictors may show better skill than a random
guess (33%). Consequently, the confidence intervals used in
the discussion of results below were estimated for each class
using the cross-validated forecast methodology described
here, but with 21-year samples of consecutive PDSI values
drawn from 1895–1976 as predictors. This allows us to
compare the forecast skill we observe to the skill we would
expect from using as predictors data which are apparently
unrelated to area burned, but which have the same
characteristics as observed PDSI. 

To avoid an artificially inflated estimate of the skill
achieved in this exercise, model diagnostics here are all for
results using ‘leave-one-out’ cross-validation. That is, for
each time step (year) of the model, a forecast is constructed
using model coefficients estimated on the subset of the data
excluding that time step. This reduces the potential for false
statistical skill in the diagnostic measures reported below
using Pearson’s correlations and conditional probabilities.*
In the context of our CCA models, ‘leave-one-out’
cross-validation requires not only that at each time-step the
coefficients of our forecast model be estimated on the subset
of the data excluding that time step, but also that the loadings
on the principal components and canonical correlations be
recalculated at each time-step on that subset as well. Thus,
for each time-step and number of PCs and CCs, we are
calculating a different model. 

The cross-validation procedure also generates a separate
SOS for each time step. The SOS does not help us to select
an exact, fixed model, but rather the approximate dimension
or model complexity that gives the best result. In this
example, SOS plots showed a maximum in skill at 6 PCs and
3 CCs for each set of cross-validated models, so we further
examine the properties of a cross-validated series of models
using these dimensions in the remainder of the paper. When
we refer to the forecast model hereafter, we are actually
referring to 21 separate forecast models, one for each year,
each using 6 PCs and 3 CCs estimated withholding
information about that year’s fires. Since the model
estimating each year’s fire activity is trained on the
remaining years’ observations, the resulting skill is
representative of the forecast skill to be expected in an
operational application of our forecasting technique.

Results and Discussion

Forecast skill

Forecast skill, expressed as the correlation between
cross-validated model estimates and observed normalized

area burned, is generally highest in the Sierra Nevada and the
Intermountain West (Fig. 3). The model appears to perform
best in the Northern and Southern Rocky Mountain
Forest-Steppe Provinces, the Cascade Mixed Forest
Provinces, the Sierran Steppe and California Dry Steppe
Provinces, the Intermountain Semidesert and Desert
Province, the American Semidesert and Desert Province, the
Arizona–New Mexico Mountains Semidesert–Open
Woodland–Coniferous Forest–Alpine Meadow Province,
and the Nevada–Utah Mountains Semidesert–Coniferous
Forest–Alpine Meadow Province, where cross-validated
correlations between observed and forecast area burned are
greater than 0.5.

The probability of a correct ‘A’ forecast—i.e. that
above-normal area burned is observed given an above-normal
forecast—is 71% (or 5 out of 7) in the Sierra Nevada and Great
Basin, and 57% (4 out of 7) in the Northern Rockies,
Cascades, California Central Valley and parts of New Mexico
and Arizona (Fig. 4A). Using a bootstrap, models were found
to be significant at the 90% confidence level if they were
associated with correct A or B forecasts 71%, or more, of the
time (corresponding to 5 or more correct forecasts out of 7 in
a tercile). A 70% confidence level pertained to models
associated with 4 or more correct out of 7 A or B forecasts.

*Because the model specification includes explanatory variables from several years, we considered whether autocorrelation in the area burned
indices could result in artificially high skill even with ‘leave-one-out’ cross-validation. We found that the effects of leaving out an additional 2 years
before or after the year being forecast were indistinguishable from the effects of reducing our short sample size (21 years) by an additional 2 years.
While a more extensive cross-validation–leaving out 3 or 5 years–might be considered more complete, it is impracticable given the short length of
the fire history currently available. 

Model correlation with observed area burned 

 

0.0        0.2        0.4        0.6        0.8        1.0 

Fig. 3. Correlation between CCA model and observed area burned
by ecosystem province.
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The probability of a surprise—i.e. the probability of
observing below-normal area burned given an above-normal
forecast—is low (14%, or 1 out of 7) for much of this region
(Fig. 4B). Figures 4C and 4D show the corresponding
probabilities for a ‘B’ (below-normal) forecast. Note that in
many provinces these probabilities are not symmetric. ‘A’
forecasts in the Northern Rockies, for example, are more
skillful than ‘B’ forecasts. The probability of correctly
forecasting a ‘normal’ fire season is not shown, but in general
these models show the greatest skill in forecasting above- or
below-normal seasons, and little skill when forecasting a

normal fire season. The Sierra Nevada and Great Basin show
the greatest forecast skill overall. 

Forecast interpretation

The weights placed by the CCA model on the various lags of
divisional PDSI for ecosystem provinces in the Great Basin
and the Sierra Nevada reveal mechanisms that enable
meaningful seasonal forecasts of area burned (Fig. 5). The
weights shown in Fig. 5 for the Intermountain Semidesert
and Desert Province are typical for all the Great Basin
provinces and for coastal Southern California provinces as

A                    Probability of a correct  

above-normal forecast 

 

 

B             Probability of below-normal fire 

activity for above-normal forecast 

0.0             0.2             0.4             0.6             0.8             1.0 

 

C                    Probability of a correct  

below-normal forecast 

D            Probability of above-normal fire 

activity for below-normal forecast 

Fig. 4. Probability of (A) above-normal fire season given an above-normal forecast; (B) below-normal fire season given an
above-normal forecast; (C) below-normal fire season given a below-normal forecast; and (D) above-normal fire season given
a below-normal forecast. Probabilities are all for cross-validated forecasts.
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Fig. 5. (A) CCA model loadings on lags of PDSI for Intermountain Semidesert and Desert Province (341), and (B) CCA model
loadings on lags of PDSI for Sierran Steppe Province (M261). Positive PDSI indicates excess moisture anomalies, and negative
PDSI indicates deficit moisture anomalies, so positive loadings on lagged PDSI (shown in blue) indicate a positive association
between area burned anomalies and moisture anomalies. Negative loadings on lagged PDSI (in red) indicate a negative association
between area burned anomalies and moisture anomalies.
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well. They show that area burned in the Great Basin is
associated with positive soil moisture index anomalies over
the region, with the strongest weights on positive soil
moisture index values in summer a year before the fire
season. CCA model weights in Fig. 5 for the Sierran Steppe
province show a strong association between area burned and
anomalous dryness in the winter and spring immediately
preceding the fire season, and a weak positive or near-neutral
association with positive soil moisture index values over
northern California a year before. 

The weights that the CCA model places on the various
lags of PDSI are very much like the relationships between
area burned and PDSI observed in Westerling et al. (2003)
using the same data as in this analysis. They found a few
characteristic patterns repeated in multiple locations across
the western U.S. for which they hypothesize links to
dominant vegetation types. In particular, in shrub and
grassland areas such as the Great Basin dominated by fine
fuels, they found strong positive correlations between area
burned and anomalous soil moisture index values a year
before the fire season, but no significant correlation with
current soil moisture index values. They hypothesized that
fire season severity in these areas was limited by fuel
availability and that positive moisture anomalies a year
earlier were associated with fine fuel production and
holdover into the following year’s fire season (cf.
Kipfmueller and Swetnam 2000). 

In areas with open-canopy forests interspersed with
parcels of shrub and grassland like the Sierra Nevada and
Colorado Rockies, they found strong negative correlations
with anomalous soil moisture index values during and
immediately preceding the fire season, and weaker positive
correlations with anomalous soil moisture index values a
year before the fire season. Fine fuel production and
carryover are probably less important in these heavier-fuel
areas than the effect of anomalous moisture on fuel
flammability (Agee 1993; Swetnam and Betancourt 1998;
Veblen et al. 2000; Donnegan et al. 2001). 

Forecasts for 2000–2002

The area burned forecast for the 2000 wildfire season (Fig.
6A) indicated an above normal fire season throughout much
of the western U.S., with the areal extent of the above-normal
forecast very close to that observed (Fig. 6B). The Coast
range in central and southern California, the California
central valley and the Colorado Plateau saw normal or
below-normal conditions instead of the above-normal
forecast, and the Mojave area also saw below-normal
conditions instead of the normal forecast. Only in the
Chihuahuan Semidesert Province in the extreme south-west
and the Pacific Lowland Mixed Forest Province in the
north-west did the observed area burned exceed the forecast
category. The 2000 season forecast model coefficients were
calculated using the previous 20-year record, so this forecast

represents information available by the end of March 2000.
Despite the extraordinary nature of the observed 2000 fire
season compared with this recent history, the forecast model
very successfully characterizes the season. 

A forecast for the 2001 fire season was prepared in
December 2001, before 2001 observed area burned data
were available (Fig. 6C). The model continued to perform
well in areas where it had shown skill in the 1980–2000
training period. The 2001 forecast predicted a less severe
season on the whole than in 2000, with a normal fire season
forecast in much of Southern California, the Intermountain
West and the Northwest, and above-normal area burned in
the Sierra Nevada and Rocky Mountains. ‘Normal’ forecasts
using our methodology showed less skill than ‘A’ or ‘B’
forecasts for the model training period, and 2001 was no
exception: all the 2001 ‘N’ forecasts were contradicted by
observations for their respective ecosystem provinces
(Fig. 6D). ‘Above-normal’ forecasts in the Sierran Steppe
and Arizona–New Mexico Mountains Semidesert Provinces
showed the highest skill (5 out of 7 correct) in the model
training period, and again successfully depicted the 2001
season. ‘A’ forecasts in the Northern Rocky Mountain Forest
Steppe, California Dry Steppe, Chihuahuan Semidesert, and
Arizona–New Mexico Mountains Semidesert Provinces
showed the next highest skill during the model training
period (4 out of 7 correct). In 2001, ‘A’ forecasts in the first
two provinces successfully depicted observations, while in
the latter two provinces an ‘N’ season was observed, similar
to the expected success ratio. There were no ‘B’ forecasts for
2001 for areas that showed significant skill in forecasting
below-normal area burned in the training period. In areas
where, based on performance for 1980–2000, we might
reasonably expect skillfull ‘A’ forecasts, the 2001 forecast
performed well. 

A preliminary forecast for the 2002 wildfire season (Fig.
6E) was presented in March 2002 at Fire in the West: A
Climate/Fuels Assessment, Outlook and Research
Symposium hosted by the Climate Assessment for the
Southwest in Tucson, Arizona, and distributed via the
internet. The 2002 forecast anticipates an above-normal fire
season in the California Dry Steppe Province and in a region
extending from the Chihuahuan Semidesert Province in New
Mexico and eastern Arizona up through the Colorado
Plateau and Arizona–New Mexico Mountains Provinces to
the Southern Rocky Mountain Steppe Province.
Below-normal forecast area burned for the Intermountain
Semidesert provinces reflect the fact that these areas—where
severe wildfire seasons tend to follow wet years—have been
anomalously dry for the past few years. While it is still too
early for a formal assessment of the 2002 forecast, it does
appear to capture some features of the current wildfire
season, where the largest fires on record in Colorado and
eastern Arizona and a very active fire season in New Mexico
are likely to result in above-normal area burned for the
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A                 Tiled Forecast 2000 

 
Below   Normal   Above 

 

B               Tiled Observed 2000 

Below   Normal   Above 

 

C                 Tiled Forecast 2001 

 
Below   Normal   Above 

D                 Tiled Observed 2001 

Below   Normal   Above 

E                 Tiled Forecast 2002 

Below   Normal   Above 

Fig. 6. Tiled forecast and observed
area burned for the 2000 (A, B) and
2001 (C, D)  fire seasons; (E) tiled
forecast area burned for the 2002 fire
season.
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Chihuahuan Semidesert, Arizona–New Mexico Mountains
Semidesert, and the Southern Rocky Mountain Steppe
Provinces. 

Conclusion

The CCA methodology uses large-scale patterns in soil
moisture anomalies over a wide region and several seasons to
produce regional forecasts of wildfire seasonal area burned
aggregated by ecosystem province a season in advance.
While this forecast model is based on a fire history of only
21 years, it produces significant results with stringent
cross-validation. In much of the western U.S., upper and
lower tercile fire seasons can be forecast with a probability
of success of 50% or greater (as compared with 33% by
chance alone), and with a low probability of a fire season at
the opposite extreme. Operational use of this or a similar
forecast methodology would seem to offer benefits for
strategic planning for wildfire management, as well as
scheduling prescribed fire and other fuel treatment
measures. 
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